- 32. AB is a diameter of a circle and C is any point on the circle. Show that the area of ΔABC is maximum, when it is isosceles.
- Sol. We have, AB = 2r

And
$$\angle ACB = 90^{\circ}$$

Let
$$\angle ABC = \theta$$

$$\Rightarrow$$
 $AC = 2r \sin \theta$ and $BC = 2r \cos \theta$

$$\therefore \text{ Area of } \Delta ABC, \Delta = \frac{1}{2} (2r \sin \theta)(2r \cos \theta)$$
$$= r^2 \sin 2\theta$$

Clearly, Δ is maximum when $\sin 2\theta$ is maximum.

$$\Delta_{\text{max.}} = r^2$$
, when $\sin 2\theta = 1$

or
$$2\theta = \frac{\pi}{2}$$

$$2\theta = \frac{\pi}{2}$$
 \Rightarrow $\theta = \frac{\pi}{4}$

⇒ Triangle is isosceles.

